### QCD FORTHE LHC

Babis Anastasiou ETH ZURICH

Brookhaven Forum 2010

#### OUTLINE

- The TEVATRON experience
- QCD for the sake of QCD
- QCD background
- QCD of new physics
- Theoretical breakthroughs and revelations

#### ENERGY WORLD RECORDS





- Tevatron: plethora of data for QCD processes at very high energies.
- Detailed QCD analyses have been published.
- LHC: The next energy frontier, where a proof that QCD is a "domesticated" theory must be furnished.

# WHAT ARE THE FACES OF QCD AT THE TEVATRON?







- Precise QCD predictions are essential for almost every analysis.
- Progress in the understanding of high energy physics relies on QCD theory



## QCD FOR THE LHC: "RETURN ON INVESTMENT"

- Precision determination of fundamental mass and coupling parameters and parton densities.
- Quantitative predictions for complicated backgrounds to the signatures of novel particles and interaction
- Efficient searches for new physics signals

- Reliable elimination of theoretical new physics models
- "Coronation" of the new physics paradigm after the Standard Model

Understanding of the inner workings of gauge theories

 $ROI = \frac{Gain(Cost) - Cost}{Cost}$ 

### FOUNDATIONS

#### QCD is a predictive theory

- Factorization
- Infrared Safety
- Perturbation theory
- (Global) experimental data



but not a solved theory!

#### EXAMPLE: WEAK BOSON FUSION

- Characteristic topology with a pair of two forward jets.
- Little color exchange in the t-channel, little amount of radiation from perturbative QCD in central detector regions

(Rainwater, Zeppenfeld; Rainwater, Zeppenfeld, Hagiwara; Plehn, Rainwater, Zeppenfeld; ...)





### PERTURBATIVE EFFECTS



- NLO QCD (Han, Valencia, Willenbrock;
   Figy, Oleari, Zeppenfeld; Berger, Campbell)
- NLO QCD and electro-weak corrections (Ciccolini, Denner, Dittmaier)
- Signal-Background interference (Andersen, Binoth, Heinrich, Smillie)
- Gluon induced weak boson fusion (Harlander, Vollinga, Weber)
- Total cross-section in NNLO QCD and 2% estimated
   precision (Bolzoni, Maltoni, Moch, Zaro)



### NON PERTURBATIVE QCD EFFECTS



- no central jets with Pt > 20
   GeV, sensitive to the underlying event
- we shall need to revisit
  underlying-event models at the
  LHC (Baehr, Butterworth, Seymour;
  Baehr, Gieseke, Seymour;
  Dasgupta, Magnea, Salam;...)
- also, revisit jet-veto analysis after first (7 TeV) and second (14 TeV) LHC data.



Baehr, Butterworth, Seymour:
restrictions from LHC
total cross-section
on a eikonal model for the UE

# ANALYZINGTHE MAKE OUT OF JETS

- · Jets are rich in their topology.
- Contain information on their origin (QCD low or high-pt splittings, decays of colorful or colorless heavy particles, etc)
- Jet definitions and observables can be a powerful tool for LHC studies
- · Event shapes probe the anatomy of QCD radiation.

### EVENT SHAPES AT HADRON COLLIDERS AND NON-PERTURBATIVE EFFECTS



Banfi, Salam, Zanderighi

- Jet resolution and event shape variables have different sensitivity to hadronization and underlying event
- Can be used to tune parton-shower Monte-Carlo's at the LHC.

### JET SUBSTRUCTURE

#### Butterworth, Davison, Rubin, Salam

 Check for events where the higgs and the vector boson are back-to-back

cluster into fat jets. analyze their make up



₩ qq

→V+jets

V+Higgs

Mass (GeV)

- two b-tagged smaller
   size jets with roughly same mass?
- filter underlying event with a smaller jet-size parameter (R)

| Jet definition                | $\sigma_S/{ m fb}$ | $\sigma_B/{ m fb}$ | $S/\sqrt{B \cdot \mathrm{fb}}$ |
|-------------------------------|--------------------|--------------------|--------------------------------|
| C/A, $R = 1.2$ , $MD-F$       | 0.57               | 0.51               | 0.80                           |
| $K_{\perp}, R = 1.0, y_{cut}$ | 0.19               | 0.74               | 0.22                           |
| SISCone, $R = 0.8$            | 0.49               | 1.33               | 0.42                           |

#### ASSOCIATED WITH TOP

- Direct access to the top yukawa coupling
- Large backgrounds, difficult combinatorics (six jets)
- dropped out from the list of discovery channels
- can revive it with "jet tomography"





### JETS AND INFRARED SAFETY



- Soft or Collinear parton emission must not alter the number of jets in an event.
- Many jet measurements are not directly comparable to perturbative calculations (e.g. W+3 jets with JETCLU @ NLO)
  - infrared safe algorithms





## FAST AND SAFE JET FINDING

Cacciari, Salam, Soyez (2007-2009)

- Fast implementation of recombination algorithms
- New infrared safe cone algorithm (SISCone)
- Better understanding of jet areas
- anti-Kt: recombination algorithm with "perfect cones"





#### PARTON DENSITIES

- Several efforts for a precise determination of parton densities:
   CTEQ: Pumplin, Huston, Lai, Nadolsky, Tung, Yuan(NLO, global fit);
   MSTW: Martin, Stirtling, Thorne, Watt (NNLO, global fit);
   JR: Jimenez-Delgado, Reya (NNLO, DIS fit);
   ABKM: Alehkin, Bluemlein, Klein, Moch (NNLO, DIS and Drell-Yan fit);
   HERA colloborations (NNLO, DIS fit)
- Input for precise hadron collider phenomenology.
- New ideas on pdf extraction, using Artificial Neural Network methods (Ball, Del Debbio, Forte, Guffanti, Latorre, Piccione, Rojo, Ubialli)
- Improvements on theoretical treatment, better error estimation, but also important changes from older sets

# IMPORTANT PDF DIFFERENCES



MSTW high-x gluon density, impact of Tevatron jet measurements

| $\sqrt{s}$ (TeV)    | ABKM            | MSTW2008 |
|---------------------|-----------------|----------|
| 1.96 ( <i>p̄p</i> ) | $6.91 \pm 0.17$ | 7.04     |
| 7 ( <i>pp</i> )     | $131.3 \pm 7.5$ | 160.5    |
| 10 (pp)             | $343 \pm 15$    | 403      |
| 14 ( <i>pp</i> )    | $780 \pm 28$    | 887      |

MSTW vs ABKM for top pair cross-section



MSTW vs ABKM for Higgs cross-section

| MRST 2001 | MRST 2004 | MRST 2006 | MSTW 2008 |
|-----------|-----------|-----------|-----------|
| 0.3833    | 0.3988    | 0.3943    | 0.3444    |

LHC data and QCD theory will be very useful to constrain pdfs

A difficult case: high-x gluon densities

Higgs cross-section at the TEVATRON MSTW vs MRST

### NEW PHYSICS APPETITE FOR COMPLICATED QCD SIMULATIONS





#### MASTER INTEGRALS



One-loop amplitude in Gauge theory

Integrals in scalar field theory

Known method(s) to compute a,b,c,d coefficients had a (# Legs)! computational cost

#### UNITARITY: A VISIONARY IDEA

Bern, Dixon, Dunbar, Kosower 1990s



Trees as input for the

Simplifications by using "natural" spinor variables

Mismatch between Trees in four dimensions and loop integration in D-dimensions
 Introduction of four dimensional helicity regularization scheme
 Clever theory input (collinear factorization) to recover the full one-loop amplitude

Trees were an essential ingredient. No explicit connection of master integral coefficients to tree amplitudes.

#### UNITARITY: A VISIONARY IDEA

Bern, Dixon, Dunbar, Kosower 1990s



- Trees as input for the
- Simplifications by using "natural" spinor variables

Mismatch between Trees in four dimensions and loop integration in D-dimensions
 Introduction of four dimensional helicity regularization scheme
 Clever theory input (collinear factorization) to recover the full one-loop amplitude

Trees were an essential ingredient. No explicit connection of master integral coefficients to tree amplitudes.

#### COEFFICIENT OF BOX MASTER

Britto, Cachazo, Feng 2004



- Simple product of four tree amplitudes
- Evaluated at complex momenta
- corresponding to loop momentum values where all propagators of the box master integral are ON-SHELL

Ossola, Papadopoulos, Pittau 2006

(building on del Aguila, Pittau, 2004)

(building on del Aguila, Pittau, 2004)
$$=\int \frac{d^dk}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) \right]$$

$$+\tilde{c}_4 \, \tilde{f}_4(\vec{k}) + \tilde{c}_3 \, \tilde{f}_3(\vec{k}) + \tilde{c}_2 \, \tilde{f}_2(\vec{k}) + \tilde{c}_1 \, \tilde{f}_1(\vec{k})$$

Ossola, Papadopoulos, Pittau 2006

(building on del Aguila, Pittau, 2004)

(building on del Aguila, Pittau, 2004) 
$$= \int \frac{d^dk}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) \right]$$

$$+ \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right]$$
After Integration:

After Integration:

Ossola, Papadopoulos, Pittau 2006



After Integration:

$$= c_4$$

Ossola, Papadopoulos, Pittau 2006

(building on del Aguila, Pittau, 2004)





Ossola, Papadopoulos, Pittau 2006



Ossola, Papadopoulos, Pittau 2006



After Integration:

$$= c_4 + c_3 + c_2 + c_1$$

Ossola, Papadopoulos, Pittau 2006

$$= \int \frac{d^dk}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) + \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right]$$

Ossola, Papadopoulos, Pittau 2006

$$= \int \frac{d^dk}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) + \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right]$$

 $\tilde{f}_i(\vec{k}), f_i(\vec{k})$ : Known rational functions of the loop momentum

Ossola, Papadopoulos, Pittau 2006

$$= \int \frac{d^dk}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) + \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right]$$

 $\tilde{f}_i(\vec{k}), f_i(\vec{k})$ : Known rational functions of the loop momentum

 $\tilde{c}_i, c_i$ : coefficients can be determined algebraically computing the integrand at a sufficient number of values for  $\vec{k}$ 

Ossola, Papadopoulos, Pittau 2006

$$\int \frac{d^d k}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) + \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right]$$

Ossola, Papadopoulos, Pittau 2006

$$\int \frac{d^dk}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) + \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right] = \int \frac{d^dk}{(2\pi)^d}$$

Integrand is "easy", essentially a tree amplitude

Ossola, Papadopoulos, Pittau 2006

$$\int \frac{d^dk}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) + \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right] = \int \frac{d^dk}{(2\pi)^d}$$

Integrand is "easy", essentially a tree amplitude

Evaluate integrand at loop momenta values such as loop particles are set ON SHELL

Ossola, Papadopoulos, Pittau 2006

$$\int \frac{d^dk}{(2\pi)^d} \left[ c_4 f_4(\vec{k}) + c_3 f_3(\vec{k}) + c_2 f_2(\vec{k}) + c_1 f_1(\vec{k}) + \tilde{c}_4 \tilde{f}_4(\vec{k}) + \tilde{c}_3 \tilde{f}_3(\vec{k}) + \tilde{c}_2 \tilde{f}_2(\vec{k}) + \tilde{c}_1 \tilde{f}_1(\vec{k}) \right] = \int \frac{d^dk}{(2\pi)^d}$$

Integrand is "easy", essentially a tree amplitude

### Evaluate integrand at loop momenta values such as loop particles are set ON SHELL

ON-SHELL: determines coefficients successively

## COEFFICIENTS AS TREE PRODUCTS

Ellis, Giele, Kunszt 2007

- ON-SHELL loop propagators = Product of tree amplitudes
- Evaluation of trees with powerful recursive methods

e.g. Berends-Giele, Britto-Cachazo-Feng-Witten, etc

#### CONFLICT OF DIMENSIONS

Loop Integrations in D dimensions, Tree amplitudes in four dimensions. Mismatch, i.e. missing terms from amplitude evaluation. Requires a second calculation.

- Specialized tree-like recursions in D=4 for the missing terms
   Berger, Bern, Dixon, Forde, Kosower 2006
- Elegant/general solution: Amplitude in a general dimension from results in D=5 and D=6. Ellis, Giele, Kunszt, Melnikov 2008
- Specialized Feynman rules for missing terms:
   Draggiotis, Garzelli, Papadopoulos, Pittau 2009

#### BREATHTAKING DEVELOPMENTS

One-loop amplitudes with 22 gluons Giele, Zanderighi (08); Lazopoulos (08); Giele, Winter (09)

numerical evaluation of all 2 to 4 amplitudes in the Les-Houches 2007 wish-list  $a\bar{a} \rightarrow t\bar{t}h\bar{h} h\bar{h}h$ 



Houches 2007 van Hameren, Papadopoulos, Pittau (09)  $qar{q}, gg \to tar{t}bar{b}, bar{b}bar{b}, W^+W^-bar{b}, tar{t}gg$   $qar{q}' \to Wggg, Zggg$ 

### NLO CALCULATIONS @ LHC

- What can we hope for?
- We cannot do better than tree calculations..., i.e. processes with 7 or 8 particles in the final state.
- All 2 to 4 processes with both Feynman diagrammatic and unitarity methods
- 2 to 5 and perhaps 2 to 6 processes with unitarity methods

# (2 to 4) HADRON COLLIDER PROCESSES

$$pp \to t\bar{t}b\bar{b}$$

Bredenstein, Denner, Dittmaier, Pozzorini Bevilacqua, Czakon, Papadopoulos, Worek

$$pp \to t\bar{t}jj$$

Bevilacqua, Czakon, Papadopoulos, Worek

$$pp \to W^{\pm} + 3jets$$

Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre Ellis, Kunszt, Melnikov, Zanderighi

$$pp \rightarrow Z + 3jets$$

Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre

$$pp \rightarrow W + 4jets$$
 (first results)

Berger, Bern, Dixon, Febres Cordero, Forde, Gleisberg, Ita, Kosower, Maitre

### LESSONS FROM MULTILEG NLO CALCULATIONS

- Guessing higher order corrections for multi-particle background processes without explicit calculations is hopeless
- There exists no unique "K-factor"
   "across the full phase-space for
   processes with such
   complicated dynamics
- NLO computations can be used to optimize LO Monte-Carlo's

SUSY BACKGROUND

 $pp \to W(\to \tau \nu) + 3jets$ 

ATLAS CUTS:  $\sigma_{NLO} \simeq 200\% \sigma_{LO}$ 

CMS CUTS:  $\sigma_{NLO} \simeq 110\% \sigma_{LO}$ 

Melnikov, Zanderighi

e.g. local scale for alphas in each branching

#### THE NNLO FRONT

- Precision of measurements at collider experiments is often excellent
- Perturbation theory is often slow at work, first correction after the leading order too large and too uncertain.
- All "2 to 1" and "2 to 2" hadron collider processes must be computed at NNLO.
- LEP, HERA, TEVATRON, LHC data = NNLO phenomenology

### THREE-JET EVENTS FROM LEP

- LEP Legacy: Excellent measurements of three jet crosssections and jet event shapes at various energies.
- Precise extraction of the strong coupling constant; largest error from theoretical prediction of the cross-section.
- •NNLO corrections to  $e^+e^- \to 3jets$  was the holy grail of the QCD community for more than a decade.

# CANCELATION OF SINGULARITIES

- Two-loop amplitude computed already in 2001 by Garland, Gehrmann, Glover, Koukoutsakis, Remiddi
- A universal method for the cancelation of matrix element singularities through NNLO for lepton collider processes by Gehrmann-de Ridder, Gehrmann, Glover, Heinrich (2007)
- Revision by Weinzierl (2008).





### Os FROM JET EVENT SHAPES

 A synthesis of fixed order QCD, Electroweak corrections, resummation, and hadronization effects describe excellently three jet events at LEP.

 State of the art extraction of alphas with the NNLO result + NLL resummation Dissertori, Gehrmann-de Ridder, Gehrmann, Glover, Heinrich, Luisoni, Stenzel

 $\alpha_s(M_{\rm Z}) = 0.1224 \pm 0.0009 \,({\rm stat}) \pm 0.0009 \,({\rm exp}) \pm 0.0012 \,({\rm had})$ 

• also from NNLO+"SCET resummation" of the thrust distribution (Becher, Schwarz).

arXiv:0906.3436



#### DRELL-YANTHEORY

- NNLO total cross-section Hamberg, van Neerven (1990); Harlander, Kilgore (2002)
- NNLO rapidity distribution CA,Dixon,Menikov,Petriello (2004)
- Fully differential NNLO
   Melnikov, Petriello (2006);
   Catani, Cieri, Ferrera, Grazzini (2009)
- Recent application, lepton charge asymmetry
   Catani, Ferrera, Grazzini (2010)



#### HIGGS PRODUCTION AT

 TEVATRON exclusion with a detailed comparison of data with signal and background distributions

 important cuts on jets and lepton isolation

- Fully Exclusive Higgs Production (CA,Melnikov,Petriello; CA, Dissertori, Stoeckli)
- HNNLO method (Catani, Grazzini;
   Grazzini)





#### GENERATORS DIFFER

- PYTHIA has a smaller jet-veto and isolation acceptance than HERWIG and MC@NLO
- HERWIG and MC@NLO closer to NNLO

VALIDATION is indispensable!



(CA, Dissertori, Grazzini, Stoeckli, Webber)

| $\sigma_{ m acc}/\sigma_{ m incl}$ | Trigger | + Jet-Veto    | + Isolation   | All Cuts      |
|------------------------------------|---------|---------------|---------------|---------------|
| NNLO $(\mu = m_{\rm H}/2)$         | 44.7%   | 39.4% (88.1%) | 36.8% (93.4%) | 27.8% (75.5%) |
| NNLO ( $\mu = 2 m_{\rm H}$ )       | 44.9%   | 41.8% (93.1%) | 40.7% (97.4%) | 31.0% (76.2%) |
| MC@NLO ( $\mu = m_{\rm H}/2$ )     | 44.4%   | 38.1% (85.8%) | 35.3% (92.5%) | 26.5% (75.2%) |
| MC@NLO ( $\mu = 2 m_{\rm H}$ )     | 44.8%   | 38.8% (86.7%) | 35.9% (92.5%) | 27.0% (75.2%) |
| HERWIG                             | 46.7%   | 40.8% (87.4%) | 37.8% (92.7%) | 28.6% (75.7%) |
| PYTHIA                             | 46.6%   | 37.9% (81.3%) | 32.2% (85.0%) | 24.4% (75.8%) |

#### BEYOND THE STANDARD GLUON FUSION

- Can we derive a mass exclusion limit for a BSM scalar Higgs boson from an experimental analysis based on SM theoretical predictions?
- very often yes, if QCD corrections and shapes of signal discriminants are model independent.
- CAN WE USE EXPERIMENTAL LIMITS OR A DISCOVERY AS PRECISION TESTS?
- Until recently no complete NNLO calculation for any extension of the SM (not even a fourth quark generation)

# BSM HIGGS PRODUCTION AT NNLO

- Additional heavy quark families (CA, Boughezal, Furlan)
- Colour octet scalars (Boughezal, Petriello)



# FUTURE NNLO PHENOMENOLOGY

- We need to develop methods that can be used for 2 to 2 scattering processes.
- Top-pair production, Di-boson production, and other routine processes will be simulated with high precision
- A big theoretical challenge, which requires additional efforts

#### RESUMMATION

- Progress in matching parton-showers and NLO calculations (MC@NLO:Webber,Frixione; White,Frixione,Laenen,Maltoni POWEHEG:Frixione,Nason,Oleari; Aliole,Nason,Oleari,Re;)
- Resummation in SCET
   thrust in ee, inclusive photons: Becher, Schwarz
   Drell-Yan and Higgs: Idilbi, Xi, Yuan, Ahrens, Becher, Neubert
   top-pair NLO+NNLL: Ahrens, Ferroglia, Neubert, Pecjak, Yang
   also Czakon, Mitov, Sterman

# ITERATIVE PERTURBATION SERIES

- The perturbation series of gauge theories displays cross-order iterations.
- These are needed to cancel infrared and UV divergences, filtering the superposition principle from ultra short and very large distance effects.
- They are exploited to formulate parton shower algorithms, and resumming large logarithms.
- But, the remainder seems very different at each order in perturbation theory!

### AN UNEXPECTED ITERATION IN N=4 SUPER YANG-MILLS THEORY

$$\mathcal{M}_{4}^{(2)}(\epsilon) = \frac{1}{2} \left( \mathcal{M}_{4}^{(1)}(\epsilon) \right)^{2} + f^{(2)}(\epsilon) \mathcal{M}_{4}^{(1)}(2\epsilon) + C^{(2)} + \mathcal{O}(\epsilon)$$

CA, Bern, Dixon, Kosower

$$\mathcal{M}_{n}^{(2)}(\epsilon) = \frac{1}{2} \left( \mathcal{M}_{n}^{(1)}(\epsilon) \right)^{2} + f^{(2)}(\epsilon) \mathcal{M}_{n}^{(1)}(2\epsilon) + C^{(2)} + \mathcal{O}(\epsilon)$$

$$\mathcal{M}_{4}^{(3)}(\epsilon) = -\frac{1}{3} \left( \mathcal{M}_{4}^{(1)}(\epsilon) \right)^{3} + \mathcal{M}_{4}^{(2)}(\epsilon) \mathcal{M}_{4}^{(1)}(\epsilon) + f^{(1)}(\epsilon) \mathcal{M}_{4}^{(1)}(3\epsilon) + C^{(3)} + \mathcal{O}(\epsilon)$$

Bern, Dixon, Smirnov

Can be computed in the strong limit with AdS/CFT Alday, Maldacena

$$\mathcal{M}_n = \exp \left[ \sum_{l=1}^{\infty} a^l f^{(l)}(\epsilon) \mathcal{M}_n^{(1)}(l\epsilon) + C^{(l)} + \mathcal{O}(\epsilon) \right]$$

$$\ln(1+\sum_{l=1}^{\infty}a^{l}\mathcal{M}_{n}^{(l)})=\ln(1+\sum_{l=1}^{\infty}a^{l}W_{n}^{(l)})+\mathcal{O}(\epsilon)$$

<Wilson Loop> = Amplitude Sokachev,Korchemsky

Can compute two-loop amplitudes with arbitrary number of CA,Brandhuber,Heslop,Khoze,Spence,Travaglini legs, using the Wilson-loop duality

## One-loop amplitudes from trees... and masters!!!



Trees in Gauge theory



Loop Master Integrals in scalar field theory

#### OUTLOOK

- Our abilities in simulating precisely collider processes have grown tremendously.
- New computational methods at NLO are extremely powerful. A classic work which will be part of future field theory books.
- Ready to take on the big challenge of finding new physics convincingly in hadron collider data.